The Radar Range Equation

Short Course on Radar and Electronic Warfare

Kyle Davidson

Introduction

- The goal is understanding and applying the radar range equation

What is the radar range equation?

$$
\frac{P_{t} \tau G_{t} G_{R} \sigma \lambda^{2}}{(4 \pi)^{3} k T F(S / N)}
$$

What does it mean?

- It expresses the relationship between the radar detection range and the radar and the target's characteristics
- There are many forms, this is one of the most common
- Next building it...

Factors in the Range Equation

Round Trip Time

$$
R=\frac{c \Delta t}{2}
$$

- $\mathrm{R}=$ range
- $\mathrm{c}=$ speed of light in a vacuum $\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$
- $\Delta t=$ round trip time

Power Density

$$
p=\frac{P_{t} G_{t}}{4 \pi R^{2}}
$$

Power Radiated from the Target

$$
P_{r}=p \sigma=\frac{P_{t} G_{t} \sigma}{4 \pi R^{2}}
$$

Power Density at Radar Receiver

Received Signal Power

Simplifying the Received Power...

$$
\begin{gathered}
A_{e f f}=\frac{G_{r} \lambda^{2}}{4 \pi} \\
S=\frac{P_{t} G_{t}}{4 \pi R^{2}} \sigma \frac{1}{4 \pi R^{2}} \frac{G_{r} \lambda^{2}}{4 \pi} \\
S=\frac{P_{t} G_{t} G_{R} \sigma \lambda^{2}}{(4 \pi)^{3} R^{4}}
\end{gathered}
$$

What about the Noise?

- The received noise power is:

$$
N=k T B F
$$

- $k=1.38 \times 10^{-23} W /(H z K)$
- $T=290 K$
- $B=$ receiver bandwidth
- $F=$ noise figure

Effects of Noise (SNR = 10 dB)

Power vs. Energy

Signal to Noise Ratio

- Ratio of signal to noise power
- Strong indicator of ability to detect a radar return

$$
(S / N)=\frac{S}{k T B F}=\frac{S T_{o b s}}{k T F}=\frac{E}{k T F}=\frac{E}{N_{0}}
$$

Received Signal Energy

- Taking into account the duty cycle to determine the average transmitted power
- The received energy is then:

$$
E=\frac{P_{t} \tau G_{t} G_{R} \sigma \lambda^{2}}{(4 \pi)^{3} R^{4}}
$$

The Complete RRE

- Assuming a matched filter is used:

$$
S / N=\frac{P_{t} \tau G_{t} G_{R} \sigma \lambda^{2}}{(4 \pi)^{3} k T F R^{4}}
$$

- Then solving for the range:

$$
R=\sqrt[4]{\frac{P_{t} \tau G_{t} G_{R} \sigma \lambda^{2}}{(4 \pi)^{3} k T F(S / N)}}
$$

Incorporating the Antenna Scan

- Time on target

$$
T_{o t}=\frac{\theta_{B}}{\omega_{a}}
$$

- $\theta_{B}=$ antenna beam width
- $\omega_{a}=$ antenna rotation rate

Integrating the Pulses

- Coherent receivers

$$
N_{i}=f_{r} T_{o t}
$$

- $f_{r}=$ PRF
- Non-coherent receivers use a $\sqrt{N_{i}}$ factor as an estimate of the effects of non-coherent integration

Integrating the Pulses and Losses

$$
R=\sqrt[4]{\frac{N_{i} P_{t} \tau G_{t} G_{R} \sigma \lambda^{2}}{(4 \pi)^{3} k T F\left(\frac{S}{N}\right)_{P_{d}} L_{i}}}
$$

- The loss factor incorporates losses from all aspects of the radar system:
- Transmitter
- Receiver
- Radar channel
- And more!

But, the Radar Horizon...

- The earth is curved!
- Range is limited by this curve, and the height of the radar and target above it

$$
R_{H} \approx 4123 \times \sqrt{H_{r}}
$$

