The Radar Range Equation

Short Course on Radar and Electronic Warfare Kyle Davidson

Introduction

• The goal is understanding and applying the radar range equation

What is the radar range equation?

$R^{4} = \frac{P_{t}\tau G_{t}G_{R}\sigma\lambda^{2}}{(4\pi)^{3}kTF(S/N)}$

What does it mean?

- It expresses the relationship between the radar detection range and the radar and the target's characteristics
- There are many forms, this is one of the most common
- Next building it...

Round Trip Time

$$R = \frac{c\Delta t}{2}$$

- R = range
- c = speed of light in a vacuum (3 x 10⁸ m/s)
- Δt = round trip time

Power Density

Power Radiated from the Target

 $P_r = p\sigma = \frac{P_t G_t \sigma}{4\pi R^2}$

Power Density at Radar Receiver

 $p_r = \frac{P_t G_t}{4\pi R^2} \sigma \frac{1}{4\pi R^2}$

Received Signal Power

 $S = \frac{P_t G_t}{4\pi R^2} \sigma \frac{1}{4\pi R^2} A_{eff}$

Simplifying the Received Power...

 $A_{eff} = \frac{G_r \lambda^2}{4\pi}$

 $S = \frac{P_t G_t}{4\pi R^2} \sigma \frac{1}{4\pi R^2} \frac{G_r \lambda^2}{4\pi}$

 $S = \frac{P_t G_t G_R \sigma \lambda^2}{(4\pi)^3 R^4}$

What about the Noise?

- The received noise power is: N = kTBF
- $k = 1.38 \times 10^{-23} W/(HzK)$
- T = 290 K
- B = receiver bandwidth
- F = noise figure

Effects of Noise (SNR = 10 dB)

Power vs. Energy

Signal to Noise Ratio

- Ratio of signal to noise power
- Strong indicator of ability to detect a radar return

 $(S/N) = \frac{S}{kTBF} = \frac{ST_{obs}}{kTF} = \frac{E}{kTF} = \frac{E}{N_0}$

Received Signal Energy

- Taking into account the duty cycle to determine the average transmitted power
- The received energy is then:

$$E = \frac{P_t \tau G_t G_R \sigma \lambda^2}{(4\pi)^3 R^4}$$

The Complete RRE

- Assuming a matched filter is used: $S/N = \frac{P_t \tau G_t G_R \sigma \lambda^2}{(4\pi)^3 k T F R^4}$
- Then solving for the range:

$$R = \sqrt[4]{\frac{P_t \tau G_t G_R \sigma \lambda^2}{(4\pi)^3 k TF(S/N)}}$$

Incorporating the Antenna Scan

Time on target

$$T_{ot} = \frac{\theta_B}{\omega_a}$$

- θ_B = antenna beam width
 - ω_a = antenna rotation rate

Integrating the Pulses

• Coherent receivers

$$N_i = f_r T_{ot}$$

- $f_r = \mathsf{PRF}$
- Non-coherent receivers use a $\sqrt{N_i}$ factor as an estimate of the effects of non-coherent integration

Integrating the Pulses and Losses

$$R = {}^{4} \sqrt{\frac{N_{i}P_{t}\tau G_{t}G_{R}\sigma\lambda^{2}}{(4\pi)^{3}kTF\left(\frac{S}{N}\right)_{P_{d}}L_{i}}}$$

- The loss factor incorporates losses from all aspects of the radar system:
 - Transmitter
 - Receiver
 - Radar channel
 - And more!

But, the Radar Horizon...

- The earth is curved!
- Range is limited by this curve, and the height of the radar and target above it

$$R_H \approx 4123 \times \sqrt{H_r}$$

